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ABSTRACT 

By an exact covering of modulus m, we mean a finite set of liner congruences 
x - -  a i (mod mi), (i = 1,2,...,r) with the properties: (I) milm , (i = 1,2,...,r); 
(II) Each integer satisfies precisely one of the congruences. Let ~ ~ 0, fl ~ 0, 
be integers and let p and q be primes. Let ~ (m) senote the M6bius function. 
Let m = pa q~ and let T ( m )  be the number of exact coverings of modulus m. 
Then, T ( m )  is given recursively by 

/ffd) T = 1. 
dim 

1. Introduction 

Several authors have considered different problems concerned with the covering 

of the integers by collections of congruences. In particular, we refer the reader to 

[1] and [2]. Many interesting questions have been raised and several are still 

unanswered. In this paper, a new problem is considered and various special cases 

are discussed. 

Let m be a positive integer. We call a system of congruences 

I 
x - a l ( r n l )  

x =- a 2 ( m 2 )  
S :  

"a  solution for m"  if 

x -= a,(m~) 
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I) mi[ m (i = 1 ,2 , - . . r ) ,  

I I )  O <= ai <= mi - 1  (i = l , 2 , . . ,  r),  

I I I )  Each integer n satisfies precisely one of the congruences. 

We shall investigate the arithmetic function T(m), the number of  solutions for m. 

The main result obtained is 

TrIEOPa~M A. Let m be divisible by at most two distinct primes, say m = p ,qB 

(ct > O, fl > 0). Then 

( 2 #(d) T = 1  
dim 

where It denotes the M6bius function. 

2. Some preliminaries 

The first thing to notice is that the congruence x = 0 (1) yields a solution for 

each m, which we shall call the trivial solution. Furthermore, it is clear that this is 

the only solution for m = 1. Hence, T(1) = 1. 

The set of  congruences 

x --  0 ( m )  

x = l(m) 

x - m - l(m) 

gives a solution for each m, which coincides with the trivial solution if and only if 

m = l .  

We shall call a set of  congruences redundant, if it represents some integer more 

than once, and incomplete, if it fails to represent some integer. 

Clearly the trivial solution is the only one for which there is an m i = 1 because 

any congruence in addition to x - 0 (1) would make the system redundant. 

I f  m is a prime p, then it is clear that the two solutions mentioned above are the 

only ones. Hence, for any prime p, T(p) = 2. 

Since mi[m, then whenever a = b(m), a and b are covered by the same con- 

gruence in any solution S. Hence, it is sufficient to cover once each of  the residue 

classes rood m. 

Let S a be the set of  solutions for m. For  S ~ S a, we define 6akS, " the  skeleton 

of S" ,  to be the set of  congruences of  S for which m~ is a proper divisor of  m. 
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If, for example, m = 4 and S is the solution 

x - 0(2) 

x --- I(4) 

x = 3(4) 

then SPkS is the congruence x = 0(2). 

Given any irredundant set S' of  congruences, for which the m~ are proper 

divisors of m, then there is clearly a unique solution S for m, such that 5"kS = S'. 

Hence, the problem of  evaluating T(m) is just that of evaluating the number of 

irredundant sets for which m~[ m properly, for all i. 

3. Two simple examples 

A) m = p  2 

Apart from the trivial solution, the only possible values for m~ are p and p2. 

Any subset of the residue classes mod p may be covered by their defining 

congruences, which then form the skeleton of a solution. Furthermore, all non- 

trivial solutions are found in this way. 

Hence, T(p 2) = 1 + 2 p. 

B) m = PiP2 (Pl ~ P2) 
We first note that there can be no solution with mi = Pl and mj = P2. Such a 

set of congruences would be redundant by the Chinese Remainder Theorem. 

Hence, for any non-trivial solution S, either m~ = Pl for all congruences in 

: k S ,  or m~ = P2 for all congruences in SekS. There are 2J'2 of  the first kind and 

2 p~ of the second kind. Since the trivial solution has not been counted, and the 

solution 5ekS = ~b has been counted twice, hence 

T(plp2) = 2Pl + 2 p~. 

4. A preliminary lemma 

In this section we prove a lemma which will lead to Theorem A. 

LEMMA. Let d[ m. The number of solutions for m, having all their moduli 

divisible by d, is (T(m /d)) d. 

PROOF. The cases d = 1 and d = m are trivial and henceforth excluded. 

Let ow n be the set of  solutions for m such that d[ ml for each i. Let .Y" be the set 

of all solutions for m/d, and let J-d denote the Cartesian product of 3-  with itself 

d times. 
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It  suffices to find a bijection =: 5P a ~ 3 -a. Let S eow d. Since d divides each mi, 

then whenever a and b are represented by the same congruence in S, we have 

a = b (mod d). Hence S may be split up into sets of  congruences Si(i  = O, 1, . . . ,  

d - 1) such that Si represents precisely those integers --- i (mod d), exactly once. 

Let Si consist of  the congruences 

x -- al(mz) 

x -- at(m,).  

Define T~ to be the set of  congruences 

x 

where b s a~ - i = - - - 7 -  (j  = 1,2, .-- ,r) .  

Then bj e Z since aj = i(d) and d] mi. Define = by, 

a(S) = (T  o, T 1, ".., Td_,). 

We shall show that a is indeed the required mapping. 

A) TieJ  

PROOF. First we note that m j / d  I m / d  so that the congruences have allowable 

moduli. Suppose x o ~ Z is represented by two congruences in T i, say 

x o - b2 

Then 

a t - i  

so mzl  x o d -  (a I - i) and similarly m21 x o d -  (a 2 - i). Hence 
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I a l ( m 0  

dx  0 + i = a2(m 2) 

L i(d) 
which contradicts the i r redundancy of  S i. Hence,  T~ is i r redundant .  Let  Xo e Z. 

Since Si is complete for  numbers  - i(d), then dxo + i is re?resented in Sl, say by. 

Therefore  mr] dx  0 - (a t - i) 

dxo + i - a l (m l ) .  

ml 

Hence Xo = b l ( rn j /d ) ,  so T~ is complete and T~ ~ J "  (i = 0, 1, . . . ,  d - 1). 

B) ~ is injective 

It is clearly sufficient to show that  the map tr: a s ~ b s is injective for then so is 

the map:  Si ~ T~. Suppose 

a . i -  i a ~ ;  i ( _~_) 
d = mod . 

Then  t 
a s -  i = a j -  i (mi) 

a s = aj(m~) 

and tr is injective. 

C) ~ is surjective 

First we note  that  distinct congruences in St are mapped  onto  distinct con- 

gruences in T~. T o  see this, consider the two distinct congruences 

X ~ a l ( m l )  

x -- a2(m2). 

I f  m I # m2, then rn I / d  # m 2/d. I f  m 1 = m 2 and we suppose b I = b2(m t /d ) ,  then 

a t - i  -- aa - i ( - ~  - 

a I - -  i =--- a 2 - -  i ( m l )  

a l  - a2 (mt)  

and hence the result. 

Now,  let (To, T1, ".., Td- 1) e ~-d. Define St as a funct ion o f  T~ by 

aj = i + dbj. 
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Since d I mj for all j ,  S~ can only represent integers = i(d). It is easy to show that 

if x o is represented by two congruences in S~, then the corresponding two con- 

gruences in T i would both represent (Xo - i)/d. Furthermore, if Xo = i(d), then Xo 

is easily shown to be represented in S~ by the congruence corresponding to the 

one in T~ which represents (Xo - i)/d. Thus ~ is surjective, and is our required 

bijection. This completes the proof of the lemma. 

5. Some consequences of the lemma 

COROLLARY 1. Let  m be a pr ime  power, m = pn (n >= 1). Then  

T(p  n) = 1 + (T(p  ~- ~))P 

PROOF. This follows immediately from the lemma by the observation that the 

trivial solution is the only one for which not all the m i are divisible by p. 

Example: 

W(p) = 2 

T(p 2) = 1 + 2 p 

T(p 3) = 1 + (1 + 2~) p, etc. 

This corollary allows us to determine T(p  ~) inductively with much less work than 

the straightforward method. 

COROLLARY 2. Let  m=p~q  p (a > 1, fl > 1). Then  

PROOF. In view of the Chinese Remainder Theorem, for any nontrivial solution. 

either Pl m, for all i or q] m i for all i. By the lemma, there are (T (m/p ) )  p of the 

first kind, and (T(m/q))q  of the second kind. We have not yet counted the trivial 

solution, but we have counted twice those solutions for which all moduli are 

divisible by pq. Hence the result. 

EXAMPLE. m = p2q 

T(p2q) = (T(pq))  p + (T(pZ)) ~ - (T(p))  p~ + 1 

and these are in forms which we have already calculated. 

Combining the two corollaries, we get Theorem A, a recursion formula which 

allows us to calculate T(m),  for all m divisible by no more than two distinct primes. 
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6. The general case 

The general case seems to be considerably more complicated. In the case where m 

is divisible by at most two distinct primes, the Chinese Remainder Theorem 

ensured that any non-trivial solution had all its moduli divisible by a given prime 

p. This allowed us to utilize the lemma to determine a recursion formula for T(m). 

In the general case the above argument breaks down. Suppose that Pl, P2, Pa 

are distinct primes dividing m. Then, there is no reason why there should not be a 

solution containing m~ = P2P3, m2 = PaP~, m3 = PIP2. 

For example, take m = 30 and let 6~kS consist of the congruences 

x = 0(6) 

x = 3(10) 

x = 1(15). 

Then 6~kS determines a solution S which is not adaptable to a reduction of the 

above type. 
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