ON EXACT COVERINGS OF THE INTEGERS

BY

JOHN FRIEDLANDER

ABSTRACT

By an exact covering of modulus *m*, we mean a finite set of liner congruences $x \equiv a_i \pmod{m_i}$, (i = 1, 2, ..., r) with the properties: (I) $m_i | m, (i = 1, 2, ..., r)$; (II) Each integer satisfies precisely one of the congruences. Let $\alpha \ge 0$, $\beta \ge 0$, be integers and let *p* and *q* be primes. Let $\mu(m)$ senote the Möbius function. Let $m = p^{\alpha} q^{\beta}$ and let T(m) be the number of exact coverings of modulus *m*. Then, T(m) is given recursively by

$$\sum_{d\mid m} \mu(d) \left(T\left(\frac{m}{d}\right) \right)^d = 1.$$

1. Introduction

Several authors have considered different problems concerned with the covering of the integers by collections of congruences. In particular, we refer the reader to [1] and [2]. Many interesting questions have been raised and several are still unanswered. In this paper, a new problem is considered and various special cases are discussed.

Let m be a positive integer. We call a system of congruences

S:
$$\begin{cases} x \equiv a_1(m_1) \\ x \equiv a_2(m_2) \\ \vdots \\ x \equiv a_r(m_r) \end{cases}$$

"a solution for m" if

Received March 22, 1972

- I) $m_i \mid m \ (i = 1, 2, \cdots r),$
- II) $0 \le a_i \le m_i 1$ $(i = 1, 2, \dots r),$

III) Each integer n satisfies precisely one of the congruences.

We shall investigate the arithmetic function T(m), the number of solutions for m. The main result obtained is

THEOREM A. Let m be divisible by at most two distinct primes, say $m = p^{\alpha}q^{\beta}$ ($\alpha \ge 0, \beta \ge 0$). Then

$$\sum_{d|m} \mu(d) \left(T\left(\frac{m}{d}\right) \right)^d = 1$$

where μ denotes the Möbius function.

2. Some preliminaries

The first thing to notice is that the congruence $x \equiv 0$ (1) yields a solution for each *m*, which we shall call the trivial solution. Furthermore, it is clear that this is the only solution for m = 1. Hence, T(1) = 1.

The set of congruences

$$x \equiv 0(m)$$
$$x \equiv 1(m)$$
$$\vdots$$
$$x \equiv m - 1(m)$$

gives a solution for each m, which coincides with the trivial solution if and only if m = 1.

We shall call a set of congruences *redundant*, if it represents some integer more than once, and *incomplete*, if it fails to represent some integer.

Clearly the trivial solution is the only one for which there is an $m_i = 1$ because any congruence in addition to $x \equiv 0$ (1) would make the system redundant.

If m is a prime p, then it is clear that the two solutions mentioned above are the only ones. Hence, for any prime p, T(p) = 2.

Since $m_i | m$, then whenever $a \equiv b(m)$, a and b are covered by the same congruence in any solution S. Hence, it is sufficient to cover once each of the residue classes mod m.

Let \mathscr{S} be the set of solutions for m. For $S \in \mathscr{S}$, we define $\mathscr{S}kS$, "the skeleton of S", to be the set of congruences of S for which m_i is a proper divisor of m.

300

If, for example, m = 4 and S is the solution

$$x \equiv 0(2)$$
$$x \equiv 1(4)$$
$$x \equiv 3(4)$$

then $\mathscr{S}kS$ is the congruence $x \equiv 0(2)$.

Given any irredundant set S' of congruences, for which the m_i are proper divisors of m, then there is clearly a unique solution S for m, such that $\mathscr{S}kS = S'$. Hence, the problem of evaluating T(m) is just that of evaluating the number of irredundant sets for which $m_i | m$ properly, for all *i*.

3. Two simple examples

A) $m = p^2$

Apart from the trivial solution, the only possible values for m_i are p and p^2 . Any subset of the residue classes mod p may be covered by their defining congruences, which then form the skeleton of a solution. Furthermore, all non-trivial solutions are found in this way.

Hence, $T(p^2) = 1 + 2^p$.

B) $m = p_1 p_2 \ (p_1 \neq p_2)$

We first note that there can be no solution with $m_i = p_1$ and $m_j = p_2$. Such a set of congruences would be redundant by the Chinese Remainder Theorem. Hence, for any non-trivial solution S, either $m_i = p_1$ for all congruences in $\mathscr{S}kS$, or $m_i = p_2$ for all congruences in $\mathscr{S}kS$. There are 2^{p_2} of the first kind and 2^{p_1} of the second kind. Since the trivial solution has not been counted, and the solution $\mathscr{S}kS = \phi$ has been counted twice, hence

$$T(p_1p_2) = 2^{p_1} + 2^{p_2}.$$

4. A preliminary lemma

In this section we prove a lemma which will lead to Theorem A.

LEMMA. Let $d \mid m$. The number of solutions for m, having all their moduli divisible by d, is $(T(m/d))^d$.

PROOF. The cases d = 1 and d = m are trivial and henceforth excluded.

Let \mathscr{S}_d be the set of solutions for *m* such that $d \mid m_i$ for each *i*. Let \mathscr{T} be the set of all solutions for m/d, and let \mathscr{T}^d denote the Cartesian product of \mathscr{T} with itself *d* times.

It suffices to find a bijection $\alpha: \mathscr{S}_d \to \mathscr{T}^d$. Let $S \in \mathscr{S}_d$. Since d divides each m_i , then whenever a and b are represented by the same congruence in S, we have $a \equiv b \pmod{d}$. Hence S may be split up into sets of congruences $S_i (i = 0, 1, \dots, d-1)$ such that S_i represents precisely those integers $\equiv i \pmod{d}$, exactly once. Let S_i consist of the congruences

$$x \equiv a_1(m_1)$$

$$\vdots$$

$$x \equiv a_r(m_r).$$

Define T_i to be the set of congruences

$$x \equiv b_1\left(\frac{m_1}{d}\right)$$

$$\vdots$$

$$x \equiv b_r\left(\frac{m_r}{d}\right)$$

where $b_j = \frac{a_j - i}{d}$ $(j = 1, 2, \dots, r)$.

Then $b_i \in Z$ since $a_i \equiv i(d)$ and $d \mid m_i$. Define α by,

$$\alpha(S)=(T_0,T_1,\cdots,T_{d-1}).$$

We shall show that α is indeed the required mapping.

A) $T_i \in \mathcal{T}$

PROOF. First we note that $m_j/d | m/d$ so that the congruences have allowable moduli. Suppose $x_0 \in Z$ is represented by two congruences in T_i , say

$$x_0 \equiv b_1\left(\frac{m_1}{d}\right)$$
$$x_0 \equiv b_2\left(\frac{m_2}{d}\right).$$

Then

$$\frac{m_1}{d} |x_0 - \frac{a_1 - i}{d}|$$

so $m_1 | x_0 d - (a_1 - i)$ and similarly $m_2 | x_0 d - (a_2 - i)$. Hence

$$dx_0 + i \equiv \begin{cases} a_1(m_1) \\ a_2(m_2) \\ i(d) \end{cases}$$

which contradicts the irredundancy of S_i . Hence, T_i is irredundant. Let $x_0 \in Z$. Since S_i is complete for numbers $\equiv i(d)$, then $dx_0 + i$ is represented in S_i , say by.

$$dx_0 + i \equiv a_1(m_1).$$

Therefore $m_1 | dx_0 - (a_1 - i)$

$$\frac{m_1}{d} \left| x_0 - \left(\frac{a_1 - i}{d} \right) \right|.$$

Hence $x_0 \equiv b_1(m_1/d)$, so T_i is complete and $T_i \in \mathscr{T}$ $(i = 0, 1, \dots, d - 1)$.

B) α is injective

It is clearly sufficient to show that the map $\sigma: a_j \to b_j$ is injective for then so is the map: $S_i \to T_i$. Suppose

$$\frac{a_j - i}{d} \equiv \frac{a'_j - i}{d} \left(\mod \frac{m_j}{d} \right).$$
$$a_j - i \equiv a'_j - i \ (m_j)$$
$$a_j \equiv a'_j (m_j)$$

Then

and σ is injective.

C) α is surjective

First we note that distinct congruences in S_i are mapped onto distinct congruences in T_i . To see this, consider the two distinct congruences

$$x \equiv a_1(m_1)$$
$$x \equiv a_2(m_2).$$

If $m_1 \neq m_2$, then $m_1/d \neq m_2/d$. If $m_1 = m_2$ and we suppose $b_1 \equiv b_2(m_1/d)$, then

$$\frac{a_1 - i}{d} \equiv \frac{a_2 - i}{d} \left(\frac{m_1}{d}\right)$$
$$a_1 - i \equiv a_2 - i(m_1)$$
$$a_1 \equiv a_2(m_1)$$

and hence the result.

Now, let $(T_0, T_1, \dots, T_{d-1}) \in \mathcal{T}^d$. Define S_i as a function of T_i by

$$a_j = i + db_j.$$

Since $d \mid m_j$ for all *j*, S_i can only represent integers $\equiv i(d)$. It is easy to show that if x_0 is represented by two congruences in S_i , then the corresponding two congruences in T_i would both represent $(x_0 - i)/d$. Furthermore, if $x_0 \equiv i(d)$, then x_0 is easily shown to be represented in S_i by the congruence corresponding to the one in T_i which represents $(x_0 - i)/d$. Thus α is surjective, and is our required bijection. This completes the proof of the lemma.

5. Some consequences of the lemma

COROLLARY 1. Let m be a prime power, $m = p^n$ $(n \ge 1)$. Then

$$T(p^n) = 1 + (T(p^{n-1}))^p$$

PROOF. This follows immediately from the lemma by the observation that the trivial solution is the only one for which not all the m_i are divisible by p.

Example:

$$T(p) = 2$$

$$T(p^{2}) = 1 + 2^{p}$$

$$T(p^{3}) = 1 + (1 + 2^{p})^{p}, \text{ etc}$$

This corollary allows us to determine $T(p^n)$ inductively with much less work than the straightforward method.

COROLLARY 2. Let $m = p^{\alpha}q^{\beta}$ ($\alpha \ge 1, \beta \ge 1$). Then

$$T(m) = \left(T\left(\frac{m}{p}\right)\right)^{p} + \left(T\left(\frac{m}{q}\right)\right)^{q} - \left(T\left(\frac{m}{pq}\right)\right)^{pq} + 1.$$

PROOF. In view of the Chinese Remainder Theorem, for any nontrivial solution. either $p \mid m_i$ for all *i* or $q \mid m_i$ for all *i*. By the lemma, there are $(T(m/p))^p$ of the first kind, and $(T(m/q))^q$ of the second kind. We have not yet counted the trivial solution, but we have counted twice those solutions for which all moduli are divisible by pq. Hence the result.

EXAMPLE. $m = p^2 q$

$$T(p^2q) = (T(pq))^p + (T(p^2))^q - (T(p))^{pq} + 1$$

and these are in forms which we have already calculated.

Combining the two corollaries, we get Theorem A, a recursion formula which allows us to calculate T(m), for all m divisible by no more than two distinct primes.

Vol. 12, 1972 EXACT COVERINGS OF THE INTEGERS

6. The general case

The general case seems to be considerably more complicated. In the case where m is divisible by at most two distinct primes, the Chinese Remainder Theorem ensured that any non-trivial solution had all its moduli divisible by a given prime p. This allowed us to utilize the lemma to determine a recursion formula for T(m).

In the general case the above argument breaks down. Suppose that p_1 , p_2 , p_3 are distinct primes dividing m. Then, there is no reason why there should not be a solution containing $m_1 = p_2 p_3$, $m_2 = p_3 p_1$, $m_3 = p_1 p_2$.

For example, take m = 30 and let $\mathscr{S}kS$ consist of the congruences

$$x \equiv 0(6)$$
$$x \equiv 3(10)$$
$$x \equiv 1(15).$$

Then $\mathscr{S}kS$ determines a solution S which is not adaptable to a reduction of the above type.

REFERENCES

P. ERDÖS, On a problem concerning congruences systems, Mat. Lapok. 3 (1952), 122-128.
 J. H. JORDAN, Convering classes of residues, Canad. J. Math. 3 (19), (1967), 514-519.

THE PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA. 16802